(7x+3)=(7x^2+x-18)

Simple and best practice solution for (7x+3)=(7x^2+x-18) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x+3)=(7x^2+x-18) equation:



(7x+3)=(7x^2+x-18)
We move all terms to the left:
(7x+3)-((7x^2+x-18))=0
We get rid of parentheses
7x-((7x^2+x-18))+3=0
We calculate terms in parentheses: -((7x^2+x-18)), so:
(7x^2+x-18)
We get rid of parentheses
7x^2+x-18
Back to the equation:
-(7x^2+x-18)
We get rid of parentheses
-7x^2+7x-x+18+3=0
We add all the numbers together, and all the variables
-7x^2+6x+21=0
a = -7; b = 6; c = +21;
Δ = b2-4ac
Δ = 62-4·(-7)·21
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{39}}{2*-7}=\frac{-6-4\sqrt{39}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{39}}{2*-7}=\frac{-6+4\sqrt{39}}{-14} $

See similar equations:

| 64+56+(2x+22)=180 | | 2(x+1)=2x=2(x+2) | | 4c-17-7c=2c-8 | | -5n+14=89 | | 0.5x+0.28(200)=0.25(166) | | n+.07n=90.95 | | 6000=1/2a*20*400 | | 78+57+(8x+5)=180 | | A=3z+63 | | 2-3x=2x=2 | | 3x-5(x-5)=-4+5x-20 | | -8+2x=-x+8+x | | 28c+18-6=48 | | 73+48+(10x+9)=180 | | S(x)=-4x-9;3 | | 6x+5-10=5×-2 | | -n=n | | 9x^2+18x-82=79 | | 15+0.5a=25+0.25a | | 2(x+5)^2+18=0 | | 6000=1/2a20^2 | | 8*x+(-72)=-144 | | -6+3x=-(x+6) | | 2(x+5)+18=0 | | 4x-18=9×1 | | 6000=1/2a20 | | Y=407y-4 | | 15/20=n/12 | | 107+26+(2x+1)=180 | | 15y=24+9y | | 4x-18=9×14 | | 10+26+(2x+1)=180 |

Equations solver categories